Sensitivity analysis for cone-constrained optimization problems under the relaxed constraint qualifications

We present the local sensitivity analysis for cone-constrained optimization problems under the CQ-type conditions significantly weaker than those traditionally used in this context. Our basic sensitivity results are established under the first or second-order sufficient optimality conditions combined with the estimate of the distance to the feasible set of the perturbed problem. We demonstrate how such an estimate can be obtained under the assumptions weaker than Robinson's CQ, and establish the corresponding sensitivity results. Finally, we apply our results to sensitivity analysis and relaxation schemes for mathematical programs with complementarity constraints. © 2005 INFORMS.

Авторы
Arutyunov A.V. 1 , Izmailov A.F.2
Номер выпуска
2
Язык
Английский
Страницы
333-353
Статус
Опубликовано
Том
30
Год
2005
Организации
  • 1 Peoples Friendship University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
  • 2 Moscow State University, Faculty of Computational Mathematics and Cybernetics, Department of Operations Research, Leninskiye Gori, 119992 Moscow, Russian Federation
Ключевые слова
Abnormal point; Cone-constrained problem; Constraint qualification; Mathematical program with complementarity constraints; Parametric optimization; Sensitivity analysis; Sufficient optimality condition
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3489/
Поделиться

Другие записи

Borisova T.N., Voskressensky L.G., Soklakova T.A., Chernyshev A.I., Bonifas N., Borisov R.S., Varlamov A.V.
Химия гетероциклических соединений. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Том 41. 2005. С. 647-655