Directional stability theorem and directional metric regularity

We develop a new regularity concept, unifying metric regularity, Robinson's constraint qualification, and directional regularity. We present the directional stability theorem and the related concept of directional metric regularity. On one hand, our directional stability theorem immediately implies Robinson's stability theorem [Arutyunov, A. V. 2005. Covering of nonlinear maps on cone in neighborhood of abnormal point. Math. Notes 77 447-460.] as a particular case, while on the other hand, our theorem easily implies various stability results under the directional regularity condition, widely used in sensitivity analysis. Some applications of this kind are also presented. © 2006 INFORMS.

Авторы
Arutyunov A.V. 1 , Izmailov A.F.2
Номер выпуска
3
Язык
Английский
Страницы
526-543
Статус
Опубликовано
Том
31
Год
2006
Организации
  • 1 Peoples Friendship University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
  • 2 Faculty of Computational Mathematics and Cybernetics, Department of Operations Research, Moscow State University, Leninskiye Gori, 119992 Moscow, Russian Federation
Ключевые слова
Directional metric regularity; Directional regularity; Feasible arc; Metric regularity; Robinson's constraint qualification; Sensitivity
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3336/
Поделиться

Другие записи

Batmonkh Z., Kallinikova V.D., Pakhorukova L.V., Kravtsov E.G., Karpenko L.P., Dalin M.V.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 142. 2006. С. 470-473