Использование геометризации уравнений Максвелла при расчёте оптических приборов

Развитие физики в XX-м веке было тесно связано с развитием математического аппарата. Общая теория относительности продемонстрировала силу геометрического подхода. К сожалению проникновение этого аппарата в другие области физики происходит достаточно медленно. Например, было несколько попыток внедрения геометрических методов в электродинамику, однако до последнего времени они оставались лишь теоретическими упражнениями. Интерес к геометрическим методам в электродинамике вызван практической необходимостью. Представляется заманчивым следующий алгоритм конструирования электромагнитного прибора. Строятся предполагаемые траектории распространения электромагнитных волн. Затем по этим траекториям вычисляются параметры среды. Также представляет интерес и обратная задача. В работе рассматривается методика расчёта оптических приборов на основе метода геометризации уравнений Максвелла. В основе метода лежит представление материальных уравнений Максвелла в виде эффективной геометрии пространства-времени. Таким образом мы получаем задачу, сходную с некой биметрической теорией гравитации, что позволяет применять хорошо разработанный аппарат дифференциальной геометрии. На основании этого мы можем как исследовать распространение электромагнитного поля по заданным параметрам среды, так и находить параметры среды по заданному закону распространения электромагнитного поля.

Geometrization of Maxwell's Equations in the Construction of Optical Devices

The development of physics in the XX-th century was closely linked to the development of the mathematical apparatus. The General Relativity demonstrated the power of the geometric approach. Unfortunately, the infiltration of this apparatus in other domains of physics is rather slow. For example, there were some attempts of integration of the geometric methods in electrodynamics, but until recently they remained only as a theoretical exercise. Interest to the geometric methods in electrodynamics is summoned by practical necessity. The following algorithm of designing of the electromagnetic device is possible. We construct the estimated trajectories of propagation of electromagnetic waves. Then we calculate the parameters of the medium along these trajectories. The inverse problem is also interesting. The paper considers the techniques of construction of optical devices based on the method of geometrization of Maxwell’s equations. The method is based on representation of material equations in the form of an effective space-time geometry. Thus we get a problem similar to that of some bimetric theory of gravity. That allows to use a well-developed apparatus of differential geometry. On this basis, we can examine the propagation of the electromagnetic field on the given parameters of the medium. It is also possible to find the parameters of the medium by a given law of propagation of electromagnetic fields.

Авторы
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
1
Язык
Русский
Страницы
81-90
Статус
Опубликовано
Том
25
Год
2017
Организации
  • 1 Росcийский университет дружбы народов
Ключевые слова
уравнения Максвелла; материальные уравнения Максвелла; геометризация уравнений Максвелла; риманова геометрия; криволинейные координаты; Maxwell’s equations; constitutive equations; Maxwell’s equa-tions geometrization; Riemann geometry; curvilinear coordinates
Дата создания
30.10.2018
Дата изменения
25.11.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/33246/
Поделиться

Другие записи

Вихрова О.Г.
Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 25. 2017. С. 209-216