Анализ системы массового обслуживания с рекуррентным обслуживанием и полным обновлением

В работе исследуется система массового обслуживания, в которой возможны потери поступающих заявок из-за введённого специального механизма обновления. Система состоит из одного обслуживающего прибора с рекуррентным распределением времени обслуживания и накопителя неограниченной ёмкости, в рассматриваемую систему поступает пуассоновский поток заявок. Механизм обновления заключается в том, что в момент окончания обслуживания на приборе заявка либо может опустошить весь накопитель и покинуть систему, либо с дополнительной вероятностью просто покинуть систему. Для исследования характеристик рассматриваемой системы строится вложенная по моментам окончания обслуживания цепь Маркова. В предположении о существовании стационарного режима для построенной вложенной цепи Маркова выводится производящая функция числа заявок в системе, вероятность простоя системы, среднее число заявок в системе, вероятность отсутствия потерь, распределение времени ожидания начала обслуживания несброшенных заявок, среднее время ожидания обслуживания для несброшенной заявки.

The Analysis of Queuing System with General Service Distribution and Renovation

We investigate the queueing system in which the losses of incoming orders due to the introduction of a special renovation mechanism are possible. The introduced queueing system consists of server with a general distribution of service time and a buffer of unlimited capacity. The incoming flow of tasks is a Poisson one. The renovation mechanism is that at the end of its service the task on the server may with some probability empty the buffer and leave the system, or with an additional probability may just leave the system. In order to study the characteristics of the system the Markov chain embedded upon the end of service times is introduced. Under the assumption of the existence of a stationary regime for the embedded Markov chain the formula for the probability generation function is obtained. With the help of the probability generation function such system characteristics as the probability of the system being empty, the average number of customers in the system, the probability of a task not to be dropped, the distribution of the service waiting time for non-dropped tasks, the average service waiting time for non-dropped requests are derived.

Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
1
Язык
Английский
Страницы
3-8
Статус
Опубликовано
Том
25
Год
2017
Организации
  • 1 Росcийский университет дружбы народов
Ключевые слова
полное обновление; система массового обслуживания; рекуррентное обслуживание; сброс заявок; вероятностные характеристики; queueing system; renovation; general service distribution; probability characteristics
Цитировать
Поделиться

Другие записи

Малых М.Д.
Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 25. 2017. С. 113-122