Rearrangement invariant envelopes of generalized Bessel and Riesz potentials

The spaces of generalized Bessel and Riesz potentials in the n-dimensional Euclidean space is studied by constructing them on the basis of rearrangement invariant space (RIS). The equivalent characterizations of cones of decreasing rearrangements is established, sharp theorems on embeddings in RISes are deduced, and criteria for the boundedness of potentials is found. The two cones determine the global integral properties of potentials and their maximal functions respectively. Equivalences show that the cone determines the global integral properties of potentials and their maximal functions. The optimal RIS is also known as the rearrangement invariant envelope of the space of potentials.

Авторы
Журнал
Номер выпуска
3
Язык
Английский
Страницы
814-818
Статус
Опубликовано
Том
78
Год
2008
Организации
  • 1 Peoples' Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow 117198, Russian Federation
Ключевые слова
Fourier analysis; Boundedness; Embeddings; Euclidean spaces; Riesz potentials; Interlocking signals
Цитировать
Поделиться

Другие записи

Kyuregyan K.K., Isaeva O.V., Mikhailov M.I., Juman Awadh A.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 146. 2008. С. 246-249