Геометрический подход к лагранжеву и гамильтонову формализмам электродинамики

При решении полевых задач, в частности задач электродинамики, используются лагранжев и гамильтонов формализмы. Полевой гамильтонов формализм имеет то преимущество перед лагранжевым, что имманентно содержит калибровочное условие, в то время как в лагражевом формализме калибровочное условие вводится специально из некоторых внешних соображений. Однако использование гамильтонового формализма в полевых задачах затруднено из-за нерегулярности полевых лагранжианов. Необходимо использовать такой вариант лагранжевого и гамильтонового формализмов, который позволил бы работать с полевыми моделями, в частности решать задачи электродинамики. В качестве математического аппарата предлагается использовать современную дифференциальную геометрию и алгебраическую топологию, в частности теорию расслоенных пространств. Этот аппарат приводит к большей ясности в понимании математических структур, ассоциированных с физическими и техническими моделями. Использование теории расслоенных пространств позволяет углубить и расширить как лагранжев, так и гамильтонов формализмы, выявить широкий спектр вариантов данных формализмов, выбрать вариант формализма, наиболее адекватный изучаемой проблеме. Фактически, только использование формализма расслоенных пространств позволяет адекватно решать полевые задачи, в частности задачи электродинамики.

A Geometric Approach to the Lagrangian and Hamiltonian Formalism of Electrodynamics

In solving field problems, in particular problems of electrodynamics, we commonly use the Lagrangian and Hamiltonian formalisms. Hamiltonian formalism of field theory has the advantage over the Lagrangian, which inherently contains a gauge condition. While the gauge condition is introduced ad hoc from some external reasons in the Lagrangian formalism. However, the use of the Hamiltonian formalism in the field theory is difficult due to the non-regularity of the field Lagrangian. We must use such variant of the Lagrangian and the Hamiltonian formalism, which would allow us to work with the field models, in particular, to solve the problem of electrodynamics. We suggest using the modern differential geometry and the algebraic topology, in particular the theory of fiber bundles, as a mathematical apparatus. This apparatus leads to greater clarity in the understanding of mathematical structures, associated with physical and technical models. Using the fiber bundles theory allows us to deepen and expand both the Lagrangian and the Hamiltonian formalism. We can detect a wide range of these formalisms. We can select the most appropriate formalism. Actually just using the fiber bundles formalism we can adequately solve the problems of the field theory, in particular the problems of electrodynamics.

Авторы
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
4
Язык
Русский
Страницы
77-83
Статус
Опубликовано
Год
2016
Организации
  • 1 Росcийский университет дружбы народов
Ключевые слова
расслоенные пространства; связность; лагранжев формализм; гамильтонов формализм; теория Янга-Миллса; fiber bundles; connectivity; Lagrangian formalism; Hamiltonian formalism; Yang–Mills theory
Цитировать
Поделиться

Другие записи

Липатова Т.В.
Вестник Российского университета дружбы народов. Серия: Теория языка. Семиотика. Семантика. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). 2016. С. 25-31