Topological splines in locally convex spaces

In the present paper, we propose a new approximation method in different function spaces. A specific feature of this method is that the choice of the basis approximating elements significantly depends on the topology of the given function space. Basis elements are constructed using the duality theory of locally convex spaces. A method of their exact calculation is presented. The approximating constructions are far-reaching generalizations of the classical Schoenberg splines and, by analogy with the latter, may be called topological splines. In the general case, such a definition of splines is not related to the choice of the grid. In this paper, we give many examples that are useful for practical applications. © Pleiades Publishing, Ltd., 2009.

Авторы
Журнал
Номер выпуска
5-6
Язык
Английский
Страницы
814-840
Статус
Опубликовано
Том
85
Год
2009
Организации
  • 1 Russian Peoples' Friendship University, Russian Federation
Ключевые слова
Duality theory; Fréchet space; Locally convex space; Polar; Quotient space; Radon measure; Schoenberg spline; Topological homomorphism; Topological spline
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2951/
Поделиться

Другие записи

Soldatenkov A.T., Polyanskii K.B., Kolyadina N.M., Soldatova S.A.
Химия гетероциклических соединений. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Том 45. 2009. С. 633-657