Stability of coincidence points and properties of covering mappings

Properties of closed set-valued covering mappings acting from one metric space into another are studied. Under quite general assumptions, it is proved that, if a given α-covering mapping and a mapping satisfying the Lipschitz condition with constant β < α have a coincidence point, then this point is stable under small perturbations (with respect to the Hausdorff metric) of these mappings. This assertion is meaningful for single-valued mappings as well. The structure of the set of coincidence points of an α-covering and a Lipschitzian mapping is studied. Conditions are obtained under which the limit of a sequence of α-covering set-valued mappings is an (α-ε)-covering for an arbitrary ε > 0. © Pleiades Publishing, Ltd., 2009.

Авторы
Журнал
Номер выпуска
1-2
Язык
Английский
Страницы
153-158
Статус
Опубликовано
Том
86
Год
2009
Организации
  • 1 Peoples' Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
Coincidence point; Complete space; Covering mapping; Generalized Hausdorff metric; Lipschitzian mapping; Metric space; Set-valued mapping
Цитировать
Поделиться

Другие записи

Zotov A.K., Frolov V.A., Zotova T.J.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 148. 2009. С. 378-381