New bifurcation theorems via the second-order optimality conditions

We derive new sufficient conditions for bifurcation relying on subtle second-order necessary optimality conditions for abnormal equality-constrained optimization problems. We relate these conditions to the known ones, and demonstrate the cases when the new conditions are easier to verify. © 2009 Elsevier Inc. All rights reserved.

Авторы
Arutyunov A.V. 1 , Izmailov A.F.2 , Jaćimović V.3
Издательство
Academic Press Inc.
Номер выпуска
2
Язык
Английский
Страницы
752-764
Статус
Опубликовано
Том
359
Год
2009
Организации
  • 1 Peoples Friendship University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
  • 2 Moscow State University, Faculty of Computational Mathematics and Cybernetics, Department of Operations Research, Leninskiye Gori, GSP-2, 119992 Moscow, Russian Federation
  • 3 Faculty of Natural Sciences, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, Montenegro
Ключевые слова
2-normality; Bifurcation; Constant solution; Constrained optimization; Parametric nonlinear equation; Second-order optimality conditions
Цитировать
Поделиться

Другие записи