Orthogonal representation of complex numbers

Units of the complex numbers algebra given by 2 × 2 matrices are shown to be composed of elementary spinors. This leads to a novel representation of any complex number in a two-dimensional orthogonal form, each direction referred to an idempotent matrix built of the spinors' components. Introduction of a "diagonal operator," a poly-index generalization of the Kronecker symbol, allows establishing equivalence of idempotent matrices and a vector description of the orthogonal axes. © 2010 Pleiades Publishing, Ltd.

Авторы
Номер выпуска
2
Язык
Английский
Страницы
137-139
Статус
Опубликовано
Том
16
Год
2010
Организации
  • 1 Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, Moscow, Russian Federation
Цитировать
Поделиться

Другие записи