On the index of nonlocal elliptic operators for the group of dilations

This paper considers the index problem for nonlocal elliptic operators associated with actions of discrete groups. The situation in which the action is isometric was considered in the general case (even for infinite groups) in book [1]. In this paper, we consider the situation of a nonisometric action. This situation is much more complicated, and we study it for the example of the group of dilations acting on the sphere of any dimension. The method for studying the problem consists in a realization of a (scalar) nonlocal operator as an operator acting on the sections of infinite dimensional bundles on the orbit space of the group action. For the operator thus obtained, we introduce the notion of ellipticity, prove a finiteness theorem, and give an index formula. © 2010 Pleiades Publishing, Ltd.

Авторы
Savin A.Y. 1, 2 , Sternin B.Y. 1, 2
Журнал
Номер выпуска
1
Язык
Английский
Страницы
519-522
Статус
Опубликовано
Том
82
Год
2010
Организации
  • 1 Peoples Friendship University, ul. Miklukho-Maklaya 6, Moscow 117198, Russian Federation
  • 2 Hannover University, Hannover, Germany
Ключевые слова
Elliptic operator; Group actions; Index formula; Infinite dimensional; Infinite groups; Nonlocal; Nonlocal operator; Orbit spaces; Spheres
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2752/
Поделиться

Другие записи