Spectral properties of functional-differential operators and a Gårding-type inequality

Spectral properties of functional-differential operators and a Gårding-type inequality are studied. Studies have shown that if the operator defined for a summation relation satisfies inequality, then, for any nonzero vector, the operator is positive definite. The symmetrized operator is considered which is obtained by extending the coefficients to smooth compactly supported functions. It is shown that the differential operator is strongly elliptic and there exist constants such that the inequality holds for all functions. The functional-differential operator is found to be m-sectorial and associated, Fredholm with index zero, and discrete. Sufficient conditions for operators are obtained to deliver a positive solution Kato's square root problem.

Авторы
Журнал
Номер выпуска
2
Язык
Английский
Страницы
765-768
Статус
Опубликовано
Том
82
Год
2010
Организации
  • 1 Peoples Friendship University, ul. Miklukho-Maklaya 6, Moscow 117198, Russian Federation
Ключевые слова
Compactly supported function; Differential operators; Fredholm; Positive definite; Positive solution; Spectral properties; Square roots; Sufficient conditions; Gallium; Mathematical operators; Differential equations
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2710/
Поделиться

Другие записи

Blagonravov M.L., Azova M.M., Frolov V.A.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 149. 2010. С. 559-561