Two-weight inequalities for the Hilbert transform of monotone functions

Two-weight inequalities for the Hilbert transform of monotone functions are characterized. The characterized weight inequality are restricted to the cones of odd or even monotone functions. The right-hand sides of inequalities is assumed to be infinite. An important problem of the theory of weight inequalities is finding conditions on nonnegative measurable functions. Weight inequalities for monotone functions are found and the discrete Hilbert transform are defined. The boundedness of the operators is also studied in the case of equal weights.

Авторы
Stepanov V.D. 1 , Tikhonov S.Yu.2
Журнал
Номер выпуска
2
Язык
Английский
Страницы
241-242
Статус
Опубликовано
Том
83
Год
2011
Организации
  • 1 Peoples Friendship University, ul. Miklukho-Maklaya 6, Moscow 117198, Russian Federation
  • 2 ICREA and Centre de Recerca Matematica, Campus de Bellaterra, Edifici C, Bellaterra, Barcelona 08193, Spain
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2579/
Поделиться

Другие записи