On supremum operators

The set of all nonnegative measurable functions and its subset consisting of all nonincreasing functions are denoted to study the supremum operators. The inequality is characterized for the Hardy operator, in which the constant C is minimal among all possible constants. The results shows that for a continuous function, the inequality for certain conditions. For a jointly measurable nonnegative function, the supremum operator is defined. The necessary and sufficient for the inequality with nonnegative weight functions are also defined.

Авторы
Prokhorov D.V.1 , Stepanov V.D. 2
Журнал
Номер выпуска
1
Язык
Английский
Страницы
457-458
Статус
Опубликовано
Том
84
Год
2011
Организации
  • 1 Computing Center, Far East Branch, Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk 680000, Russian Federation
  • 2 Peoples Friendship University, ul. Miklukho-Maklaya 6, Moscow 117198, Russian Federation
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2523/
Поделиться

Другие записи