Uniqueness of transverse solutions for reaction-diffusion equations with spatially distributed hysteresis

The paper deals with reaction-diffusion equations involving a hysteretic discontinuity in the source term, which is defined at each spatial point. Such problems describe biological processes and chemical reactions in which diffusive and nondiffusive substances interact according to hysteresis law. Under the assumption that the initial data are spatially transverse, we prove a theorem on the uniqueness of solutions. The theorem covers the case of non-Lipschitz hysteresis branches arising in the theory of slow-fast systems. © 2012 Elsevier Ltd. All rights reserved.

Авторы
Gurevich P. 1, 2 , Tikhomirov S.1
Издательство
Elsevier Ltd
Номер выпуска
18
Язык
Английский
Страницы
6610-6619
Статус
Опубликовано
Том
75
Год
2012
Организации
  • 1 Free University of Berlin, Germany
  • 2 Peoples' Friendship University of Russia, Russian Federation
Ключевые слова
Reaction-diffusion equation; Spatially distributed hysteresis; Uniqueness of solution
Цитировать
Поделиться

Другие записи