On the classical and generalized solutions of boundary-value problems for difference-differential equations with variable coefficients

The first boundary-value problem for second-order difference-differential equations with variable coefficients on a finite interval (0, d) is considered. The following question is studied: Under what conditions will the boundary-value problem for a difference-differential equation have a classical solution for an arbitrary continuous right-hand side? It is proved that a necessary and sufficient condition for the existence of a classical solution is that certain coefficients of the difference operators on the orbits generated by the shifts be equal to zero. © 2013 Pleiades Publishing, Ltd.

Авторы
Журнал
Номер выпуска
5-6
Язык
Английский
Страницы
653-667
Статус
Опубликовано
Том
94
Год
2013
Организации
  • 1 Peoples' Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
difference operator; difference-differential equation; first boundary-value problem; Sobolev space
Цитировать
Поделиться

Другие записи

Voskressensky L.G., Ovcharov M.V., Borisova T.N., Listratova A.V., Kulikova L.N., Sorokina E.A., Gromov S.P., Varlamov A.V.
Химия гетероциклических соединений. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Том 49. 2013. С. 1180-1187