Reduction theorems for weighted integral inequalities on the cone of monotone functions

This paper surveys results related to the reduction of integral inequalities involving positive operators in weighted Lebesgue spaces on the real semi-axis and valid on the cone of monotone functions, to certain more easily manageable inequalities valid on the cone of non-negative functions. The case of monotone operators is new. As an application, a complete characterization for all possible integrability parameters is obtained for a number of Volterra operators. © 2013 Russian Academy of Sciences (DoM).

Авторы
Gogatishvili A.1 , Stepanov V.D. 2
Номер выпуска
4
Язык
Английский
Страницы
597-664
Статус
Опубликовано
Том
68
Год
2013
Организации
  • 1 Academy of Sciences, Institute of Mathematics, Czech Republic
  • 2 Peoples Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
Bounded operators; Cone of monotone functions; Duality principle; Reduction theorem; Weighted integral inequality; Weighted lebesgue space
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/1938/
Поделиться

Другие записи