В работе исследуются свойства множителей Лагранжа из принципа максимума Понтрягина для задач с фазовыми ограничениями. Получены достаточные условия непрерывности решения сопряженного уравнения в зависимости от способа выхода экстремальной траектории на границу фазового ограничения. Доказательство использует понятие замыкания по мере измеримой по Лебегу функции и теорему Каратеодори.
Properties of Lagrange multipliers from the Pontryagin maximum principle for problems with state constraints are investigated. Sufficient conditions for the continuity of the solution of the adjoint solution depending on how the extremal trajectory approaches the state constraint boundary are obtained. The proof uses the notion of closure by measure of a Lebesgue measurable function and the Caratheodory theorem.