Generalized Coherent States and Random Shift Operators

We study the Chernoff averages for random generalized shift operators in the case of noncanonical commutation relations between creation and annihilation operators. We introduce the concepts of shift-dual ladder operators and generalized shift operators. As an example, we consider a one-parameter family of commutation relations for which generalized shift operators are unitary and satisfy the semigroup property on straight lines passing through the origin. For this family, we prove that the sequence of expectations of Feynman–Chernoff iterations of random shift operators converges to a limit strongly continuous semigroup.

Авторы
Kalmetev R.Sh.1, 2 , Orlov Yu.N. 1 , Sakbaev V.Zh. 1, 2, 3
Номер выпуска
1
Язык
Английский
Страницы
115-122
Статус
Опубликовано
Том
324
Год
2024
Организации
  • 1 Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
  • 2 Moscow Institute of Physics and Technology (National Research University)
  • 3 Institute of Mathematics with Computing Centre – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences
Ключевые слова
Generalized coherent states; Feynman-Chernoff iterations; random operators; Strongly continuous one-parameter semigroups
Цитировать
Поделиться

Другие записи