ARTIFICIAL INTELLIGENCE IN LABORATORY DIAGNOSTICS OF IRON DEFICIENCY ANEMIA (review of literature)

The review is devoted to the potential use of artificial intelligence in the diagnosis of iron deficiency anemia (IDA) using machine learning (ML) based on clinical blood count (CBС) data and laboratory indicators of iron metabolism. The paper presents studies on the development, implementation and evaluation of ML algorithms that: 1) allow predicting the concentration of iron metabolism indicators (in particular, serum ferritin) based on a minimum set of laboratory tests (regression algorithms; 2) automatically assess the risk of iron deficiency in the body, reflected by a low level of ferritin in the blood serum of patients with anemia (classification algorithms); 3) perform second line diagnostic tests on existing specimens based on the results of initially ordered tests (reflex testing algorithms). © 2025, Joint Stock Company "EKOlab". All rights reserved.

Авторы
Varekha N.V. , Stuklov N.I. , Gimadiev R.R. , Varakina-Mitrail K.A.
Издательство
Izdatel'stvo Meditsina
Номер выпуска
2
Язык
Русский
Страницы
102-107
Статус
Опубликовано
Том
70
Год
2025
Организации
  • 1 Рeoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, 117198, Russian Federation
  • 2 LabHub LLC, Moscow, 119002, Russian Federation
Ключевые слова
artificial intelligence; ferritin; iron deficiency; iron deficiency anemia; machine learning; serum iron
Цитировать

Другие записи

Kolpakov P.A., Yurchenko I.Yu.
Журнал фронтирных исследований. ООО НПО "Генезис.Фронтир.Наука". Том 10. 2025. С. 83-105