Inverse spectral problem for the Schrödinger operator on the square lattice

We consider an inverse spectral problem on a quantum graph associated with the square lattice. Assuming that the potentials on the edges are compactly supported and symmetric, we show that the Dirichlet-to-Neumann map for a boundary value problem on a finite part of the graph uniquely determines the potentials. We obtain a reconstruction procedure, which is based on the reduction of the differential Schrödinger operator to a discrete one. As a corollary of the main results, it is proved that the S-matrix for all energies in any given open set in the continuous spectrum uniquely specifies the potentials on the square lattice. © 2024 IOP Publishing Ltd.

Авторы
Wu D. , Yang C.-F. , Bondarenko N.P.
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
5
Язык
Английский
Статус
Опубликовано
Номер
055008
Том
40
Год
2024
Организации
  • 1 Department of Applied Mathematics, School of Mathematics and Statistics, Nanjing University of Science and Technology, Jiangsu, Nanjing, 210094, China
  • 2 S.M. Nikolskii Mathematical Institute, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
Ключевые слова
Dirichlet-to-Neumann map; inverse scattering; inverse spectral problem; Schrödinger operator; square lattice
Цитировать
Поделиться

Другие записи