The practical benefits of sustainable catalysts have incessantly increased their demand over the past few decades. For chemical processes, extended carbon supported nanocatalysts are useful because of their high porosity area and appropriate physiochemical stability. In numerous catalytic processes, they have been employed to convert biomass into valuable chemicals like biofuels. Carbon nanostructures with large specific surface can be chemically functionalized and adorned with metal nanoparticles to exhibit great catalytic activity and endurance. Herein, the significances of using a nanostructured carbon catalyst are exemplified by recent literature on the application of nanocatalysts reinforced by carbon materials for biomass conversion. Several elements, including carbon textural features, carbon support modification, nanocatalyst production techniques, catalyst stability and reusability, and biomass conversion catalyst performance, are highlighted especially in terms of benefits of the recyclability, reactivity, and interactions of the proposed nanocatalysts with the inherent properties of the utilized carbon substrates. Besides the advantages and possible demerits of the newer catalysts, their limitations, and potential applications as carbon-based nanocatalysts are discussed. © 2023 Elsevier B.V.