On Numerical Approximation of Diffusion Problems Governed by Variable-Exponent Nonlinear Elliptic Operators

We highlight the interest and the limitations of the L1-based Young measure technique for studying convergence of numerical approximations for diffusion problems of the variable-exponent p(x)- and p(u)- laplacian kind. CVFE (Control Volume Finite Element) and DDFV (Discrete Duality Finite Volume) schemes are analyzed and tested. In the situation where the variable exponent is log-Hölder continuous, convergence is proved along the guidelines elaborated in [Andreianov et al. Nonlinear Anal. 72, 4649–4660, 2010 & Nonlinear Anal. 73, 2–24, 2010] while investigating the structural stability of weak solutions for this class of PDEs. In general, the lack of density of the smooth functions in the energy space, related to the Lavrentiev phenomenon for the associated variational problems, makes it necessary to distinguish two notions of solutions, the narrow ones (the H-solutions) and the broad ones (the W-solutions). Some situations where approximation methods “select” the one or the other of these two solution notions are described and illustrated by numerical tests.

Авторы
Andreianov Boris 1, 2 , Quenjel E.H.3
Издательство
Springer
Номер выпуска
1
Язык
Английский
Страницы
213-243
Статус
Опубликовано
Том
51
Год
2023
Организации
  • 1 Université de Tours, Université d’Orléans
  • 2 Peoples’ Friendship University of Russia (RUDN University)
  • 3 CEBB
Ключевые слова
p(x)-laplacian; p(u)-laplacian; Gradient finite volume approximation; Young measure; Lavrentiev phenomenon; 35J60; 65M08; 46E35; mathematics; general
Цитировать
Поделиться

Другие записи

Баранова Ю.А., Башарова О.Г., Беляев В.В., Волкова В.А., Гаглоева Э.Н., Горовой В.Г., Данильян С.Б., Дреева И.В., Дюсекешев А.Н., Егорушкина Т.Н., Жаров А.Н., Калинин К.Н., Калоева З.Ю., Кузнецова Е.А., Кунцевич О.Ю., Мамедова Н.М., Паршин А.В., Попов Н.М., Савкин В.И., Санников В.С., Синицын А.А., Синь Ш., Тимофеев Ю.В., Фёдорова Е.В., Челак С.В., Шабанова О.А., Юнг П.С., Сланов О.Т.
2023. 200 с.