Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group

\(\eta\)-invariants for a class of parameter-dependent nonlocal operators associated with an isometric action of a discrete group of polynomial growth on a smooth closed manifold are studied. The \(\eta\)-invariant is defined as the regularization of the winding number. The formula for the variation of the \(\eta\)-invariant when the operator changes is obtained. The results are based on the study of asymptotic expansions of traces of parameter-dependent nonlocal operators.

Авторы
Журнал
Номер выпуска
5-6
Язык
Английский
Страницы
685-696
Статус
Опубликовано
Том
112
Год
2022
Организации
  • 1 Peoples’ Friendship University of Russia (RUDN University)
Ключевые слова
elliptic operator; parameter-dependent operator; nonlocal operator; -invariant; mathematics; general
Цитировать
Поделиться

Другие записи