Full Version for Algorithmic Analysis of Finite-Source Multi-Server Heterogeneous Queues

The paper deals with a finite-source queueing system serving one class of customers and consisting of heterogeneous servers with unequal service intensi- ties and of one common queue. The main model has a non-preemptive service when the customer can not change the server during its service time. The optimal allocation problem is formulated as a Markov-decision one. We show numerically that the optimal policy which minimizes the long-run average num- ber of customers in the system has a threshold structure. We derive the matrix expressions for the mean performance measures and compare the main model with alternative simplified queuing systems which are analysed for the arbitrary number of servers. We observe that the preemptive heterogeneous model op- erating under a threshold policy is a good approximation for the main model by calculating the mean number of customers in the system. Moreover,using the preemptive and non-preemptive queueing models with the faster server first policy the lower and upper bounds are calculated for this mean value

Авторы
Efrosinin D. 1, 2, 3 , Stepanova N.2 , Sztrik J.
Издательство
Институт проблем управления им. В.А. Трапезникова РАН
Язык
Английский
Страницы
424-453
Статус
Опубликовано
Год
2021
Организации
  • 1 Johannes Kepler University Linz
  • 2 V.A. Trapeznikov Institute of Control Sciences of RAS
  • 3 Peoples' Friendship University of Russia (RUDN University)
  • 4 University of Debrecen
Ключевые слова
finite-source queueing system; Preemptive and non-preemptive service; Markov-decision process; Policy-Iteration Algorithm; performance analysis
Цитировать
Поделиться

Другие записи

ИГНАТОВ А.Н., ДЖАЛИЛОВ Ф.С., МИРОШНИКОВ К.А., ЕВСЕЕВ П.В.
Микробные биотехнологии: фундаментальные и прикладные аспекты. Республиканское унитарное предприятие "Издательский дом "Белорусская наука". 2021. С. 153-168
Houankpo H.G.K., Kozyrev D.V., Nibasumba E., Mouale M.N.B.
Распределенные компьютерные и телекоммуникационные сети: управление, вычисление, связь (DCCN-2021). Институт проблем управления им. В.А. Трапезникова РАН. 2021. С. 415-423