Text Categorization Methods Using Topical Importance Characteristic

This paper presents a study, which evaluates the quality of well-know classification algorithms using Topical Importance Characteristic as a weighting scheme for features. For purposes of research, we used the Twenty Newsgroups dataset. The result of classifiers' performance on different subsets shows that method based on TIC outperforms approaches based on TF-IDF.

Сборник материалов конференции
Издательство
Voronezh State University
Язык
Английский
Страницы
488-489
Статус
Опубликовано
Год
2017
Организации
  • 1 Peoples Friendship University of Russia
Ключевые слова
topical classification; random forest classifier; Twenty Newsgroups; Topical Importance Characteristic; Multinomial Naïve Bayes
Дата создания
10.07.2024
Дата изменения
10.07.2024
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/148503/
Поделиться

Другие записи

Гвоздикова Е.Н., Аванесов А.М.
Вестник Российского научного центра рентгенорадиологии Минздрава России. Федеральное государственное бюджетное учреждение "Российский научный центр рентгенорадиологии" Министерства здравоохранения Российской Федерации. Том 17. 2017. С. 1-1