В настоящей работе рассмотрено применение методов компьютерного зрения и рекуррентных нейронных сетей для решения задачи выявления и классификации действий на видео.В статье приводится описание подхода, применённого авторами для анализа видеофайлов. Рекуррентные нейронные сети выступают в качестве классификатора. На вход классификатору передаются мешки слов, которые являются гистограммами низкоуровневых действий. Гистограммы представляют собой наборы дескрипторов кадров видеофайлов. Для поиска дескрипторов на изображениях используются алгоритмы SIFT, ORB, BRISK, AKAZE.
In this paper, we consider the application of computer vision and recurrent neural networks to solve the problem of identifying and classifying actions on video. The article describes the approach taken by the authors to analyze video files. Recurrent neural networks uses as a classifier. The classifier takes data in a ``bags of words'' format that describes low-level actions. The histograms contained in a ``bags of words'' are represented by sets of video file descriptors. Next algorithms are used to search for descriptors: SIFT, ORB, BRISK, AKAZE. (In Russian).