О ЕДИНСТВЕННОСТИ КЛИРИНГОВЫХ ВЕКТОРОВ, РЕДУЦИРУЮЩИХ СИСТЕМНЫЙ РИСК

ON UNIQUENESS OF CLEARING VECTORS REDUCING THE SYSTEMIC RISK

Clearing of financial system, i. e., of a network of interconnecting banks, is a procedure of simultaneous repaying debts to reduce their total volume. The vector whose components are repayments of each bank is called clearing vector. In simple models considered by Eisenberg and Noe (2001) and, independently, by Suzuki (2002), it was shown that the clearing to the minimal value of debts accordingly to natural rules can be formulated as fixpoint problems. The existence of their solutions, i. e., of clearing vectors, is rather straightforward and can be obtained by a direct reference to the Knaster-Tarski or Brouwer theorems. The uniqueness of clearing vectors is a more delicate problem which was solved by Eisenberg and Noe using a graph structure of the financial network. The uniqueness results have been proved in two generalizations of the Eisenberg-Noe model: in the Elsinger model with seniority of liabilities and in the Amini-Filipovic-Minca type model with several types of illiquid assets whose firing sale has a market impact.

Авторы
Эль Битар Халил1 , Кабанов Ю.М. 1, 2, 3 , Мокбель Рита1
Издательство
Федеральный исследовательский центр "Информатика и управление" РАН
Номер выпуска
1
Язык
Английский
Страницы
109-118
Статус
Опубликовано
Том
11
Год
2017
Организации
  • 1 Университет Франш-Конте
  • 2 Институт проблем информатики Федерального исследовательского центра «Информатика и управление» Российской академии наук, Российский университет дружбы народов
  • 3 Национальный исследовательский университет «МЭИ»
Ключевые слова
systemic risk; financial networks; clearing; Knaster-Tarski theorem; Eisenberg-noe model; debt seniority; price impact
Цитировать
Поделиться

Другие записи

Пыхтина Н.А.
Инновационная экономика и менеджмент: Методы и технологии. Общество с ограниченной ответственностью Издательство "Аспект Пресс". 2017. С. 56-60
Плиев М.А., Фан С.
Сибирский математический журнал. Федеральное государственное бюджетное учреждение науки Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук. Том 58. 2017. С. 174-184