Построенные в ВЦ РАН динамические модели региональной экономики содержат большое число неизвестных параметров, идентифицировать которые можно с помощью минимизации нелинейных критериев близости расчетных и статистических данных. В работе для этого применяется параллельный индексный метод глобальной оптимизации, разработанный в ННГУ. Метод использует редукцию размерности на основе кривых Пеано и информационно-статистический подход, дополненный различными модификациями.
Constructed in Dorodnicyn Computing Center of the Russian Academy of Sciences dynamic models of regional economy contain a lot of unknown parameters. It is possible to identify them by minimization of nonlinear criteria of affinity for calculated and statistical data. In this paper a parallel index method of global optimization developed in Nizhny Novgorod State University is applied for that. The method uses a reduction of dimension on the basis of Peano curves and the information-statistical approach added with different updating.