Рассматривается задача оптимизации орбитального построения двухъярусных спутниковых систем (СС) непрерывного обзора сферического слоя околоземного космического пространства (ОКП) по критерию минимума суммарных затрат характеристической скорости на создание системы. Проведены декомпозиция данной задачи и сведение к традиционной задаче выбора в классе дельта-систем одноярусных орбитальных построений и их оптимизации по критерию минимума суммарной характеристической скорости (СХС). Обсуждаются результаты и предложение по использованию полученных оптимальных вариантов двухъярусных СС для решения различных практических задач.
Nowadays, there is a wide nomenclature of practically new significant tasks of monitoring vast near-Earth space areas by space systems, associated with the “space debris” problems, spacecraft technical maintenance in orbit etc. All tasks of such kind in an abstract formulation can be interpreted in the form of mathematical problem on optimization of the satellite constellations orbital construction for continuous coverage of specified spherical layers of near-Earth space. However, still there is no theoretical apparatus for effectively solving this problem. The article formulates for the first time the optimization problems of the two-tier satellite constellations orbital construction for near-Earth spherical layer continuous coverage by the criterion of the characteristic velocity minimum total costs on the system creation. Each tier of such a system is formed in circular orbits with the same altitude and inclination values for all satellites. The satellites of each tier are oriented herewith in such a way that observation cone, formed by the onboard equipment of the satellites in the upper tier are directed downward towards the Earth, while in the upper tier - towards the opposite side. Decomposition of this problem and its reduction to the traditional problem of selection in the delta-systems class of one-tier orbital constellations and their optimization by the total characteristic velocity minimum was performed in this work. The authors suggest methodological approach to this problem solving; discuss the obtained numerical results and the suggestion on application of the obtained optimal options of the two-tier satellite systems for solving various practical tasks. The two-tier orbital structure in many cases has no advantage over the traditional, single-tiered option. However, under certain conditions the two-tier orbital construction appears after all more preferential.