Рассмотрены расширения общей теории относительности (ОТО). Указаны причины для обобщения ОТО, связанные как с трудностями самой теории, так и с необходимость интерпетации новых астрономических наблюдений. Перечислены многочисленные попытки обобщения ОТО, выходящие за рамки римановой геометрии. Отмечена роль финслеровой геометрии в описании анизотропии пространства и решении проблемы темной материи во Вселенной. Показано, что среди всех финслеровых пространств выделяется класс пространств, конформно связанных с плоскими финслеровыми пространствами, причем коэффициент растяжения-сжатия и Мировая функция, через которую он выражается, зависят только от интервала исходного плоского пространства. Тогда из принципа самодостаточности финслеровой геометрии следует, что коэффициент растяжения-сжатия - это постоянная, деленная на интервал, а Мировая функция - это произведение постоянной на логарифм от коэффициента растяжения-сжатия. Каждый элемент такого класса обладает группой изометрической симметрии, которая включает в себя группу изометрической симметрии исходного плоского финслерова пространства в качестве собственной подгруппы, и обладает конформной группой симметрии, совпадающей с конформной группой симметрии исходного плоского пространства. Если взять в качестве исходного пространства пространство Минковского, то пространство указанного выше класса есть псевдориманово пространство, в четырехмерной области, где интервал в некотором приближении можно заменить временной координатой, совпадающее в том же приближении с пространством де Ситтера.
Extensions of General Relativity (GR) have been considered. Reasons for generalizing GR related to difficulties of the theory itself as well as a necessity of interpreting the new astronomical observations are indicated. Numerous attempts of generalizing GR being beyond the scope of Riemannian geometry are listed. A class of spaces conformally coupled to flat Finsler spaces is shown to be singled out among all Finsler spaces. Its dilatation-contraction coefficient and the world function, in terms of which it is expressed, depend only on an interval of the initial flat space. Then from the Finsler geometry self-sufficiency principle it follows that the dilatation-contraction coefficient is a constant divided by the interval, and the world function is a product of a constant and a logarithm of the dilatation-contraction coefficient. Each element of the class possesses an isometric symmetry group, which includes that of the initial flat Finsler space as a proper subgroup, and possesses a conformal symmetry group coinciding with that of initial flat space. If one takes Minkowski space as an initial one, then the above class space is a pseudo-Riemannian space in the four-dimensional region, where the interval in some approximation is changeable by a temporal coordinate, coinciding with de Sitter space in the same approximation.