Методика отыскания алгебраических интегралов дифференциальных уравнений первого порядка

Статья посвящена отысканию алгебраических интегралов обыкновенных дифференциальных уравнений в системах компьютерной алгебры, основной акцент сделан на выработку практических указаний по работе с оригинальным пакетом Lagutinski for Sage. В начале статьи формулируется задача Дебона: для заданного дифференциального уравнения pdx + qdy = 0, где p, q - многочлены из кольца [x,y], выяснить, имеет ли оно рациональный интеграл, и в случае утвердительного ответа предъявить этот интеграл. Обсуждена проблема отыскания верхней грани для порядка интеграла и её значение для решения дифференциальных уравнений на практике, сформулирована ограниченная задача Дебона. В основу решения задачи положен метод М. Н. Лагутинского и его реализация в системе компьютерной алгебры Sage. Теория и её реализация протестированы на примерах из задачника А. Ф. Филиппова. Проделанные численные эксперименты свидетельствуют, что метода позволяет на практике без особых затрат ресурсов и времени идентифицировать наличие рационального интеграла, однако является весьма затратной как метод вычисления этого интеграла. В заключении даны рекомендации по оптимальному использованию метода М. Н. Лагутинского. Все вычисления выполнены в системе компьютерной алгебры Sage.

The Method of Finding Algebraic Integral for First-order Differential Equations

Article is devoted to search of algebraic integrals of the ordinary differential equations in the systems of computer algebra. The main attention is paid to development of practical instructions for work with an original package for Sage called in honor of M. N. Lagutinski. At the beginning of article Beaune’s problem is formulated: for a given differential equation, we need to identify whether it is in the form of rational integral, and if the answer is true, we need to quadrature it. The difficulties of finding the upper bound of the integral order and its value for solving differential equations practically are discussed, bounded Beaune’s problem is formulated. Our work is based on the method of M. N. Lagutinski. The theory and its realization are tested on the problems from Text-Book on Differential Equations by A. F. Filippov. The numerical experiments, which were carried out, show that the method makes it possible to identify the existence of the rational integral without taking much resources and time. However, using the method to calculate integrals is very time-consuming. In conclusion, recommendations on the optimal use of the method of Lagutinski are given. All calculations are executed in the computer algebra system Sage.

Авторы
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
3
Язык
Русский
Страницы
285-291
Статус
Опубликовано
Том
26
Год
2018
Организации
  • 1 Российский университет дружбы народов
Ключевые слова
задача Дебона; sage; problem of Florimond de Beaune; Lagutinski method; integrated algebraic curves; algebraic integrals; метод Лагутинского; интегральные алгебраические кривые; алгебраические интегралы
Дата создания
20.10.2018
Дата изменения
21.11.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/11846/
Поделиться

Другие записи

Велиева Т.Р.
Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 26. 2018. С. 272-284
Комоцкий В.А., Соколов Ю.М., Суетин Н.В.
Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 26. 2018. С. 176-182