Real Estate Valuation Methods and Parameters: A Sсoping Review

Background. Every year the number of real estate transactions grows. This raises the need for a high-quality, fast and complete real estate appraisal. This review of the subject field is motivated by the need to identify effective algorithms and significant factors that affect the final value of the object. Purpose. The purpose of this subject field review is to provide a comprehensive analysis of groups of different parameters and real estate valuation algorithms from 2018 to 2022. Materials and Methods. This review of the subject field was conducted in accordance with PRISMA-ScR guidelines for research retrieval and selection. Sources published between 2018 and 2022 were searched in the Scopus database. Articles and original research that were strictly relevant to the topic of this review were selected. Results. During the analysis the authors were able to identify 8 groups of parameters affecting the value of real estate: technical characteristics, environmental characteristics, real estate standards, social infrastructure, demographic characteristics environmental characteristics, transport accessibility and spatial dependence. Also revealed the most effective methods for evaluation: multiple linear regression model and Artificial Neural Networks. Conclusion. The results can be used to build an accurate real estate valuation model for a particular city or region.

Авторы
Сборник материалов конференции
Издательство
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет пищевых производств"
Язык
Английский
Страницы
43-71
Статус
Опубликовано
Год
2023
Организации
  • 1 Peoples' Friendship University of Russia (RUDN University)
Ключевые слова
real estate; housing prices; property valuation; mathematical models
Дата создания
01.07.2024
Дата изменения
01.07.2024
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/111126/
Поделиться

Другие записи

Аbuzyarova, Dmitrevskaya S.
ЦИФРОВОЕ ОБЩЕСТВО: ОБРАЗОВАНИЕ, НАУКА, КАРЬЕРА. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет пищевых производств". 2023. С. 8-42
Bulaev M., Podoroga V., Ageeva L.
ЦИФРОВОЕ ОБЩЕСТВО: ОБРАЗОВАНИЕ, НАУКА, КАРЬЕРА. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет пищевых производств". 2023. С. 72-90