Absolute stability of a difference scheme for the multidimensional time-dependently identification telegraph problem

In the present study, a new implicit absolute stable difference scheme (DS) for an approximate solution of the time-dependent source identification problem (SIP) for the telegraph equation (TE) is presented. The stability of difference problem is established. In applications of abstract results in a Hilbert space with a self-adjoint positive definite operator (SAPDO), theorems on stability estimates for the solution of DSs for approximate solutions of the multidimensional time-dependent SIPs for telegraph equations are obtained. Finally, these DSs are tested on stability in both two- and three-dimensional examples with different boundary conditions and some computational results are illustrated.

Авторы
Ashyralyev Allaberen 1, 2, 3 , Al-Hazaimeh Haitham4 , Ashyralyyev Charyyar1, 5, 6
Издательство
Springer Science and Business Media, LLC
Номер выпуска
8
Язык
Английский
Страницы
333
Статус
Опубликовано
Том
42
Год
2023
Организации
  • 1 Bahcesehir University
  • 2 Peoples’ Friendship University of Russia (RUDN University)
  • 3 Institute of Mathematics and Mathematical Modeling
  • 4 Near East University
  • 5 National University of Uzbekistan named after Mirzo Ulugbek
  • 6 Khoja Akhmet Yassawi International Kazakh-Turkish University
Ключевые слова
difference schemes; Source identification problems; telegraph equations; absolute stability; 35L90; 35N30; 34H05; 65L20; Applications of Mathematics; Computational Mathematics and Numerical Analysis; Mathematical Applications in the Physical Sciences; Mathematical Applications in Computer Science
Дата создания
01.07.2024
Дата изменения
01.07.2024
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/110793/
Поделиться

Другие записи

Alkhasov Abdumanap, Komina Elena, Ratnikov Sergey, Saveleva Maria, Romanova Ekaterina, Gusev Aleksey, Lochmatov Maksim, Yatsyk Sergey, Dyakonova Elena
Journal of Laparoendoscopic and Advanced Surgical Techniques. Mary Ann Liebert Inc.. Том 33. 2023. С. 1231-1235