Multidimensional Cubature Formulas with Superpower Convergence

In many applications, multidimensional integrals over the unit hypercube arise, which are calculated using Monte Carlo methods. The convergence of the best of them turns out to be quite slow. In this paper, fundamentally new cubature formulas with superpower convergence based on improved Korobov grids and a special variable substitution are proposed. A posteriori error estimates are constructed, which are nearly indistinguishable from the actual accuracy. Examples of calculations illustrating the advantages of the proposed methods are given.

Авторы
Belov A.A. 1, 2 , Tintul M.A.1
Журнал
Номер выпуска
3
Язык
Английский
Страницы
514-518
Статус
Опубликовано
Том
108
Год
2023
Организации
  • 1 Faculty of Physics, Lomonosov Moscow State University
  • 2 Peoples’ Friendship University of Russia (RUDN University)
Ключевые слова
multidimensional integrals; Monte Carlo method; superpower convergence; Korobov grids; mathematics; general
Цитировать
Поделиться

Другие записи