Generalized Solutions of the First Boundary Value Problem for a Differential–Difference Equation in Divergence Form on a Finite Interval

We consider the Dirichlet problem for a second-order differential–difference equation in divergence form with variable coefficients on a finite interval \(Q=(0,d) \). Conditions on the right-hand side of the equation ensuring the smoothness of the generalized solution on the entire interval are studied. It is proved that the generalized solution of the problem belongs to the Sobolev space \(W_2^2(Q) \) if the right-hand side is orthogonal in the space \(L_2(Q) \) to finitely many linearly independent functions.

Авторы
Журнал
Номер выпуска
7
Язык
Английский
Страницы
880-892
Статус
Опубликовано
Том
59
Год
2023
Организации
  • 1 RUDN University
  • 2 Moscow Center for Fundamental and Applied Mathematics
Ключевые слова
ordinary differential equations; partial differential equations; Difference and Functional Equations
Цитировать
Поделиться

Другие записи