On the Effect of Irregularity of the Domain Boundary on the Solution of a Boundary Value Problem for the Laplace Equation

We consider an inhomogeneous boundary value problem with mixed boundary conditions for the Laplace equation in a domain representing a perturbation \(\Pi _\gamma \) of a rectangle \(\Pi \) where one of its sides is replaced by some curve \(\gamma \) of minimal smoothness. An estimate is obtained for the difference between the solutions of the perturbed and unperturbed problems in the norm of the Sobolev space \( H^1\) on their common domain.

Авторы
Журнал
Номер выпуска
5
Язык
Английский
Страницы
664-669
Статус
Опубликовано
Том
59
Год
2023
Организации
  • 1 RUDN University
  • 2 MIREA—Russian Technological University
Ключевые слова
ordinary differential equations; partial differential equations; Difference and Functional Equations
Цитировать
Поделиться

Другие записи

Muraev A.A., Volkov A.V., Polevoi V.V., Tereshchyuk S.V., Gusarov A.M., Soloshenkov P.P., Ivanov S.Y.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 175. 2023. С. 286-290