Simulation of Hydrogen Combustion at Different Pressures Using a Neural Network

The possibility of solving problems of chemical kinetics using artificial neural networks is investigated. The main laboriousness of solving problems of chemical kinetics lies in solving a rigid system of balance equations, whose right side contains the component mass production intensity. This problem can be singled out as a separate stage of solving a system of ordinary differential equations within a common time step of the global problem, and this stage is considered in this paper. A fairly simple model is developed that can solve this problem, which makes it possible to achieve a threefold acceleration of calculations as compared to numerical methods. The resulting neural network operates in a recurrent mode and can predict the behavior of a chemical multicomponent dynamic system many steps ahead.

Авторы
Mal’sagov M.Y.1 , Mikhal’chenko E.V.1 , Karandashev I.M. 1, 2 , Nikitin V.F.1
Издательство
PLENUM PUBL CORP
Номер выпуска
2
Язык
Английский
Страницы
145-150
Статус
Опубликовано
Том
59
Год
2023
Организации
  • 1 Scientific Research Institute of System Analysis
  • 2 Peoples’ Friendship University of Russia (RUDN University)
Ключевые слова
numerical simulation of chemical processes; combustion; detonation; neural networks; deep learning; classical mechanics; Classical and Continuum Physics; physical chemistry; vibration; dynamical systems; control; engineering; general
Дата создания
01.07.2024
Дата изменения
01.07.2024
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/109290/
Поделиться

Другие записи