On the Positive Recurrence of Finite Regenerative Stochastic Models

We consider a general approach to establish the positive recurrence (stability) of regenerative stochastic systems. The approach is based on the renewal theory and a characterization of the remaining renewal time of the embedded renewal process generated by regeneration. We discuss how this analysis is simplified for some classes of the stochastic systems. The general approach is then illustrated by the stability analysis of a k-out-of-n repairable system containing n unreliable components with exponential lifetimes. Then we extend the stability analysis to the system with non-exponential lifetimes.

Авторы
Morozov Evsey1, 2, 3 , Rykov Vladimir 4, 5
Журнал
Издательство
MDPI AG
Номер выпуска
23
Язык
Английский
Страницы
4754
Статус
Опубликовано
Том
11
Год
2023
Организации
  • 1 Institute of Applied Mathematical Research, Karelian Research Centre, Russian Academy of Sciences, 185035 Petrozavodsk, Russia
  • 2 Department of Applied Mathematics and Informatics, Yaroslav-the-Wise Novgorod State University, 173020 Veliky Novgorod, Russia
  • 3 Department of Applied Mathematics and Cybernetics, Petrozavodsk State University, 185910 Petrozavodsk, Russia
  • 4 Department of Applied Mathematics and Computer Modelling, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
  • 5 Department of Applied Probability and Informatics, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
Ключевые слова
regenerative stochastic system; k-out-of-n repairable system; stability; unreliable component
Дата создания
26.02.2024
Дата изменения
26.02.2024
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/106253/
Поделиться

Другие записи

Ян Юнья
Актуальные проблемы русского языка и методики его преподавания: традиции и инновации : сборник статей XIX Всероссийской научно-практической конференций молодых ученых с международным участием. Москва, РУДН, 15 апреля 2022 г.. РУДН. 2022. С. 370-374