В статье представлен оригинальный пакет для исследования численных решений обыкновенных дифференциальных уравнений, встраиваемый в систему компьютерной алгебры Sage. Этот проект направлен на более тесную интеграцию численных и символьных методов и прежде всего преследует цель создания удобного инструмента для работы с численными решениями в Sage. В этом пакете определено два новых класса – начальные задачи и приближенные решения. Внутри первого класса определены инструменты для символьных вычислений, связанных с начальными задачами, внутри второго – инструменты для интерполяции значений символьных выражений на приближенном решении и оценивания ошибки по методу Ричардсона. Затем кратко описана реализация метода Рунге–Кутты, главная особенность которой – возможность работы с произвольными таблицы Бутчера и произвольными числовыми полями.
This paper presents an original package for investigating numerical solutions of ordinary differential equations, which is built in the Sage computer algebra system. This project is focused on a closer integration of numerical and symbolic methods while primarily aiming to create a convenient tool for working with numerical solutions in Sage. The package defines two new classes: initial problems and approximate solutions. The first class defines tools for symbolic computations related to initial problems, while the second class defines tools for interpolating values of symbolic expressions on an approximate solution and estimating the error with the use of the Richardson method. An implementation of the Runge–Kutta method is briefly described, with its main feature being the possibility of working with arbitrary Butcher tableaux and arbitrary numeric fields.