On non-closure of range of values of elliptic operator for a plane angle

Let {Mathematical expression} a plane angle of opening α∈(π, 2π). Let PD and PN the Dirichlet and Neumann problems associated to the Poisson equation in {Mathematical expression}. For PD and PN it is proved non existence of solution in Lp ( {Mathematical expression}) when p=2/(1±π/α). In other words, the ranges of elliptic operators naturally associated to PD and PN are not-closed in Lp ( {Mathematical expression}) for p=2/(1±π/α). © 1993 Università degli Studi di Ferrara.

Авторы
Издательство
Springer-Verlag
Номер выпуска
1
Язык
Английский
Страницы
65-75
Статус
Опубликовано
Том
39
Год
1993
Организации
  • 1 Via Garibaldi 23-1-51, Moscow, 13-335, 117335, Russian Federation
  • 2 Department of Differential Equation and Functional Analysis, Russian People's Friendship University, Mikluh-Maklaya str. 6, Moscow, 117198, Russian Federation
Цитировать
Поделиться

Другие записи

Aliev A.E., Sinitsyna A.A., Borisova T.N., Stazharova I.A., Prostakov N.S., Varlamov A.V.
Химия гетероциклических соединений. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Том 29. 1993. С. 65-70