Elliptic theory for operators associated with diffeomorphisms of smooth manifolds

In this paper, the authors give a survey of index theory for elliptic operators associated with diffeomorphisms of smooth manifolds. Mostly, they consider operators associated with a discrete group G of diffeomorphisms of a closed smooth manifold M, called G-pseudodifferential operators. These operators act on the space C^infty(M) of smooth functions on M and have the form D=sum_{gin G}D_gT_g, where {D_g} is a collection of pseudodifferential operators on M and T_gu(x)=u(g^{-1}(x)) is the shift operator corresponding to the diffeomorphism gin G. The authors introduce the notion of ellipticity for G-pseudodifferential operators, show that ellipticity implies the Fredholm property of the operator in Sobolev spaces, and prove the index formula, which computes the index of an elliptic G-pseudodifferential operator in terms of the symbol of the operator and the topological invariants of the G-manifold M. Both isometric and nonisometric actions are treated. The authors also discuss operators associated with an action of a compact Lie group G on a closed smooth manifold M. These operators have the form D=int_GD_gT_gdg, where dg is the Haar measure. The authors describe a method of pseudodifferential uniformization which allows them to reduce the index problem for elliptic G-pseudodifferential operators to the index problem for transversally elliptic operators acting on sections of some infinite-dimensional bundles over M.

Авторы
Savin Anton , Sternin Boris
Редакторы
Kordyukov Yuri A.
Сборник материалов конференции
Издательство
Birkhäuser/Springer Basel AG, Basel
Язык
Английский
Страницы
1-26
Статус
Опубликовано
Год
2013
Цитировать
Поделиться

Другие записи

Zvyagin A.V., Zvyagin V.G., Polyakov D.M., Biler Piotr
Известия высших учебных заведений. Математика. Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет".