A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces

We present a survey on generic singularities of geodesic flows in smooth signature changing metrics (often called pseudo-Riemannian) in dimension 2. Generically, a pseudo-Riemannian metric on a 2-manifold S changes its signature (degenerates) along a curve S0, which locally separates S into a Riemannian (R) and a Lorentzian (L) domain. The geodesic flow does not have singularities over R and L, and for any point q∈ R∪ L and every tangential direction p∈ ℝℙ there exists a unique geodesic passing through the point q with the direction p. On the contrary, geodesics cannot pass through a point q∈ S0 in arbitrary tangential directions, but only in some admissible directions; the number of admissible directions is 1 or 2 or 3. We study this phenomenon and the local properties of geodesics near q∈ S0. © Springer International Publishing AG, part of Springer Nature 2018.

Авторы
Pavlova N.G. 1 , Remizov A.O.2, 3
Сборник материалов конференции
Издательство
Springer New York LLC
Язык
Английский
Страницы
135-155
Статус
Опубликовано
Том
222
Год
2018
Организации
  • 1 Department of Nonlinear Analysis and Optimization, RUDN University, Moscow, Russian Federation
  • 2 V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation
  • 3 Laboratory of Dynamical Systems, National Research University Higher School of Economics, Moscow, Russian Federation
Ключевые слова
Geodesics; Normal forms; Pseudo-Riemannian metrics; Singular points
Цитировать
Поделиться

Другие записи

Новикова В.А., Хорольский В.А., Стрельникова Н.П., Макаренко Г.В., Гаспарян С.А., Ткаченко С.В., Селихова М.С., Андреева М.В.
Медицинский вестник Северного Кавказа. Stavropol State Medical University. Том 13. 2018. С. 382-385