Rattling in spatially discrete diffusion equations with hysteresis

The paper treats a reaction-diffusion equation with hysteretic nonlinearity on a onedimensional lattice. It arises as a result of the spatial discretization of the corresponding continuous model with so-called nontransverse initial data and exhibits a propagating microstructure|which we call rattling|in the hysteretic component of the solution. We analyze this microstructure and determine the speed of its propagation depending on the parameters of hysteresis and the nontransversality coefficient in the initial data. © 2017 Society for Industrial and Applied Mathematics.

Авторы
Gurevich P. 1, 2 , Tikhomirov S.3, 4
Издательство
Society for Industrial and Applied Mathematics Publications
Номер выпуска
3
Язык
Английский
Страницы
1176-1197
Статус
Опубликовано
Том
15
Год
2017
Организации
  • 1 Free University of Berlin, Institute of Mathematics i, Arnimalle 3, Berlin, 14195, Germany
  • 2 Peoples' Friendship University of Russia, Miklukho-Maklaya str. 6, Moscow, 117198, Russian Federation
  • 3 St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • 4 Max Planck Institute for Mathematics in the Sciences, Inselstraé 22, Leipzig, 04103, Germany
Ключевые слова
Hysteresis; Lattice; Pattern; Rattling; Reaction-diffusion equations; Spatially discrete parabolic equations
Цитировать
Поделиться

Другие записи