On stabilization of solutions of higher order evolution inequalities

We obtain sharp conditions guaranteeing that every non-negative weak solution of the inequality (Formula Present), stabilizes to zero as t → ∞. These conditions generalize the well-known Keller-Osserman condition on the growth of the function g at infinity. © 2019 - IOS Press and the authors. All rights reserved.

Авторы
Kon'Kov A.1 , Shishkov A. 2, 3
Журнал
Издательство
IOS Press
Номер выпуска
1-2
Язык
Английский
Страницы
1-17
Статус
Опубликовано
Том
115
Год
2019
Организации
  • 1 Department of Differential Equations, Faculty of Mechanics and Mathematics, Moscow Lomonosov State University, Russian Federation
  • 2 Center of Nonlinear Problems of Mathematical Physics, RUDN University, Russian Federation
  • 3 Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Ukraine
Ключевые слова
Higher order evolution inequalities; nonlinearity; stabilization
Цитировать
Поделиться

Другие записи

Tush E.V., Eliseeva T.I., Khaletskaya О.V., Krasilnikova S.V., Ovsyannikov D.Y., Potemina T.E., Ignatov S.K.
Современные технологии в медицине. Приволжский исследовательский медицинский университет. Том 11. 2019. С. 133-147