Sobolev inequalities for the symmetric gradient in arbitrary domains

A form of Sobolev inequalities for the symmetric gradient of vector-valued functions is proposed, which allows for arbitrary ground domains in Rn. In the relevant inequalities, boundary regularity of domains is replaced with information on boundary traces of trial functions. The inequalities so obtained exhibit the same exponents as in classical inequalities for the full gradient of Sobolev functions, in regular domains. Furthermore, they involve constants independent of the geometry of the domain, and hence yield novel results yet for smooth domains. Our approach relies upon a pointwise estimate for the functions in question via a Riesz potential of their symmetric gradient and an unconventional potential depending on their boundary trace. © 2019 Elsevier Ltd

Авторы
Cianchi A.1 , Maz'ya V.G. 2, 3
Издательство
Elsevier Ltd
Язык
Английский
Статус
Опубликовано
Год
2019
Организации
  • 1 Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, Firenze, 50134, Italy
  • 2 Department of Mathematics, Linköping University, Linköping, SE 581 83, Sweden
  • 3 RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
Ключевые слова
Boundary traces; Irregular domains; Lorentz spaces; Orlicz spaces; Riesz potential; Sobolev inequalities; Symmetric gradient
Цитировать
Поделиться

Другие записи

Petrovitch-Belkin O., Yeryomin A., Bokeriya S.
International Journal of Agricultural Management. Institute of Agricultural Management. Том 8. 2019. С. 94-112