Magnetically separable nanocatalysts were synthesized by incorporating iron nanoparticles on a mesoporous aluminosilicate (Al-SBA-15) through a mechanochemical grinding pathway in a single step. Noticeably, magnetic features were achieved by employing biomass waste as a carbon source, which additionally may confer high oxygen functionalities to the resulting material. The resulting catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, porosimetry, and magnetic susceptibility. The magnetic nanocatalysts were tested in the selective oxidative cleavage reaction of isoeugenol and vanillyl alcohol to vanillin. As a result, the magnetic nanocatalysts demonstrated high catalytic activity, chemical stability, and enormous separation/reusability qualities. The origin of catalytic properties and its relationship with the iron oxide precursor were analyzed in terms of the chemical, morphological, and structural properties of the samples. Such analysis allows, thus, to highlight the superficial concentration of the iron entities and the interaction with Al as key factors to obtain a good catalytic response. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.