Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation

In this article, the analytical and numerical solution of a one-dimensional space-time fractional advection diffusion equation is presented. The separation of variables method is used to carry out the analytical solution, the basis of the system eigenfunction and their corresponding eigenvalue for basic equation is determined, and the numerical solution is based on constructing the Crank-Nicolson finite difference scheme of the equivalent partial integro-differential equations. The convergence and unconditional stability of the solution are investigated. Finally, the numerical and analytical experiments are given to verify the theoretical analysis. © 2022 by the authors.

Авторы
Mahmoud E.I. , Aleroev T.S.
Журнал
Издательство
MDPI AG
Номер выпуска
17
Язык
Английский
Статус
Опубликовано
Номер
3160
Том
10
Год
2022
Организации
  • 1 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
  • 2 Nikolskii Mathematical Institute, Peoples Friendship University of Russia, Moscow, 117198, Russian Federation
  • 3 Department of Applied Mathematics, Moscow State University of Civil Engineering, Yaroslavskoe Shosse, 26, Moscow, 129337, Russian Federation
Ключевые слова
Caputo fractional derivative; convergence; Crank–Nicolson finite difference scheme; Riemann–Liouville fractional derivative; space-time fractional advection diffusion equation; stability
Цитировать
Поделиться

Другие записи