Clenshaw algorithm in the interpolation problem by the Chebyshev collocation method

The article describes a method for calculating interpolation coefficients of expansion using Chebyshev polynomials. The method is valid when the desired function is bounded and has a finite number of maxima and minima in a finite domain of interpolation. The essence of the method is that the interpolated desired function can be represented as an expansion in Chebyshev polynomials; then the expansion coefficients are determined using the collocation method by reducing the problem to solving a well-conditioned system of linear algebraic equations for the required coefficients. Using the well-known useful properties of Chebyshev polynomials can significantly simplify the solution of the problem of function interpolation. A technique using the Clenshaw algorithm for summing the series and determining the expansion coefficients of the interpolated function, based on the discrete orthogonality of Chebyshev polynomials of the 1st kind, is outlined. © Lovetskiy K. P., Tiutiunnik A. A., do Nascimento Vicente F. J., Boa Morte C. T., 2024.

Авторы
Lovetskiy K.P. , Tiutiunnik A.A. , Do Nascimento F.J.V. , Boa Morte C.T.
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
2
Язык
Английский
Страницы
202-212
Статус
Опубликовано
Том
32
Год
2024
Организации
  • 1 Department of Computational Mathematics and Artificial Intelligence of Peoples’ Friendship University of Russia named after Patrice Lumumba RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
Clenshaw algorithm for accelerating calculations; interpolation of functions by the Chebyshev collocation method
Цитировать
Поделиться

Другие записи