Homogenization of the linearized ionic transport equations in random porous media

In this paper we obtain the homogenization results for a system of partial differential equations describing the transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid random disperse porous medium. We present a study of the nonlinear Poisson-Boltzmann equation in a random medium, establish convergence of the stochastic homogenization procedure and prove well-posedness of the two-scale homogenized equations. In addition, after separating scales, we prove that the effective tensor satisfies the so-called Onsager properties, that is the tensor is symmetric and positive definite. This result shows that the Onsager theory applies to random porous media. The strong convergence of the fluxes is also established. In the periodic case homogenization results for the mentioned system have been obtained in Allaire et al (2010 J. Math. Phys. 51 123103). © 2023 IOP Publishing Ltd & London Mathematical Society.

Авторы
Mikelić A. , Piatnitski A.
Журнал
Издательство
IOP PUBLISHING LTD
Номер выпуска
7
Язык
Английский
Страницы
3835-3885
Статус
Опубликовано
Том
36
Год
2023
Организации
  • 1 Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, cedex, Villeurbanne, F-69622, France
  • 2 The Arctic University of Norway, campus Narvik, Postbox 385, Narvik, 8505, Norway
  • 3 Institute for Information Transmission Problems of RAS, Bolshoi Karetny per., 19, Moscow, 127051, Russian Federation
  • 4 Mathematical Institute, Peoples Friendship University of Russia (RUDN University), Ulitsa Miklukho-Maklaya, 6, Moscow, 117198, Russian Federation
Ключевые слова
Boltzmann-Poisson equation; electro-osmosis; homogenization; random porous media
Цитировать
Поделиться

Другие записи